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ABSTRACT

Electronic support measures (ESM) systems play an increasingly important role in

modem warfare and can influence the outcome of a military engagement. The application

of ESM can be extended to anti-guerrilla and anti-drug operations where law enforcement

agencies can exploit the fact that their presence is inducing the outlaw to depend more on

radio communications to coordinate their activities. When a propagation path of no more

than one reflection at the ionosphere (1-hop) can be assumed, position of an HF emitter can

be determined by a single observing site using vertical triangulation, provided that the height

of the ionosphere at the point where the radio wave is reflected, can be determined. This

technique is known as "high frequency direction finding single-site-location" (HFDF SSL).

This thesis analyzes the HFDF SSL error in measuring the direction of arrival ot the signal,

how this error is generated by the antenna array and its effect on emitter location. The

characteristics of the two antenna arrays used by a specific HFDF SSL system that

implements the phase-interferometer tecbpi.que were studied using electromagnetic modeling.

Results showed that angle-of-arrival errors for the high band array were less than 0.50 and

were under 0.20 for the low band antenna system Ihe maximum HFDF SSL lateral and

range error of this system were found to be 8.7 tan ano 22.4 km respectively for the high

band array, when the targeted emitter is located at 500 kin, an, the incoming wave has an

E-propagation mode. The smallest lateral and range error were found to be 2.1 km and 4.3

km respectively for the low band array, when the targeted emitter is located at 300 krm, and

the incoming wave has an E-mole.
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I. INTRODUCTION

A. OVERVIEW

Passive electronic warfare (EW) systems play an increasingly important role in

modem warfare. Electronic support measures (ESM) are now used to accomplish a

number of missions that include the detection, location, identification and threat

assessment of hostile emitters. Modem ESM systems provide critically important data

which can influence the outcome of a military engagement.

The application of ESM can be extended to anti-guerrilla and anti-drug operations.

Law enforcement agencies can use these techniques to help locate illegal installations and

to obtain additional advantage from the element of surprise. Specifically, law enforcement

agencies can exploit the fact that their presence is inducing increased mobility of the

outlaw, which in turn will cause them to depend more on radio communications to

coordinate their activities.

Passive ESM systems are harder to build, and accuracy requirements are generally

more stringent than requirements for active EW systems. These systems have to work in

an unfriendly and totally uncooperative signal environment. In order to be effective they

must exhibit broad spectral coverage, high probability of intercept, real time operation,

and high accuracy. Probably the most important component of modem ESM systems is

the radio direction finder.



Radio direction finding (DF) can be defined as geographically fixing the position

of a targeted transmitter both in azimuth and range, using one or more receiving sites.

Virtually all DF systems derive emitter location from the measured arrival angle of the

received signal. This angle of arrival is always defined in azimuth and in some cases

elevation. Horizontal or azimuth triangulation is the determination of the position of an

emitter using azimuth angles measured at two or more DF stations. This is the most

common technique used in DF, but requires that receiving sites be separated by a distance

comparable to the distance to the emitter, and their operation must be precisely

synchronized in order to obtain accurate position measurements.

In the high frequency (HF) band, propagation of radio waves takes place mainly by

means of reflections at the ionized layers of the atmosphere. Only at very short distances

are the direct ray and surface waves of importance. By using this special characteristic,

another way of DF can be implemented for HF signals provided that the height of the

ionosphere at the point where the radio wave is reflected, can be determined.

When a propagation path of no more than one reflection at the ionosphere (1-hop)

can be assumed for a received HF signal, emitter position location can be determined by

a single observing site using vertical triangulation. This technique is known as "high

frequency direction finding single-site-location" (HFDF SSL) and is used to determine

location of HF emitters up to approximately 2,000 km where the sky wave signal may

arrive via a 1-hop propagation path.

In the process of measuring the direction of arrival of a signal using an HFDF SSL,

two basic errors can occur, one due to the uncertainty of measuring the exact direction
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of arrival of the signal, and the other due to path deviations which make the direction of

arrival different from the true direction of the transmitter. The first error depends on the

accuracy of techniques and equipment used, ani the second on the precision in

deternining characteristics of the ionosphere at the reflection point, at time of measure-

ment.

This thesis will analyze the HFDF SSL error in measuring the direction of arrival

of the signal, how this error is generated by the antenna array and its effect on emitter

location. The characteristics of the two antenna arrays use! by a specific HFDF SSL

system that implements the phase-interferometer technique will be studied to find IChsir

effects on the HFDF SSL error.

B. DF TECHNIQUES

Direction finding systems can be classified in two broad categories according to the

manner in which their antenna systems obtain and process information from the arriving

signal of interest. These categories are scalar DF and vector (or phasor) DF systems

[Ref. 1].

Scalar DF systems measure only one component of the signal of interest (such as

amplitude or phase), and use the information of the measured component to determine

azimuth and/or elevation angles of arrival of the signal. Vector DF systems measure

simultaneously two or more components of the received signal and try to determine the

characteristics of the individual rays that compose the incoming wave-field. A

disadvantage of this kind of system is that a single incident wave may be defined by as

3



many as four parameters [Ref. 1]; thus it must have a sufficient number of antenna ports

and sufficient measuring and processing capabilities so that the desired number of

unknown parameters can be resolved.

Scalar DF systems are generally much simpler than vector systems and therefore

are better suited for tactical use. Current scalar DF systems can be classified into three

basic types:

1) Spinning DF

2) Doppler DF

3) Interferometer DF

1. Spinning DF

These systems, also called rotating DF systems, measure the amplitude of a

signal received by a highly directive antenna or antenna array. The receive pattern of the

antenna array is rotated mechanically or electronically until a null or peak is directed

towards the incoming signal. The angular position of the antenna (or its pattern) provides

information to compute the line of bearing to the transmitter. Spinning DF systems are

by far the most commonly used type of DF systems.

Most spinning DF systems use a small aperture antenna (small antenna size

compared to a wavelength) in order to achieve a receive pattern with sharp nulls, but this

technique has the disadvantage of a low overall gain and the null occurs where the gain

is at minimum. To overcome this limitation the patterns of two or more elements can be

combined to produce sharper beamwidths and allow the use of the maximum gain portion
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of the antenna receiving pattern. To achieve this, small aperture antenna elements must

be used and the overall gain is still low.

Even though large aperture antenna arrays have been used to improve the gain

of the system, spinning DF systems still have the disadvantage of not being instantaneous

since the amount of time the antenna beam points to a certain azimuth is a small fraction

of one completc rotation. This characteristic of spinning DF can induce errors in short-

duration signals if the scan rate is not high enough. For a high scan rate the system has

to have a wide bandwidth.

2. Doppler DF

Doppler DF systems constitute a variation of the spinning DF technique where

frequency modulation is superimposed on the received signal by mechanically rotating a

single omnidirectional antenna element rapidly around the perimeter of a circle [Ref. 2].

The frequency deviation or Doppler Frequency is proportional to the scan rate and the

size of the circle of rotation.

A common version of this technique obtains an electronically simulated

Doppler effect by smoothly commutating between fixed identical antenna elements

positioned around a ring. The requirement to rotate (or commutate) the antenna elements

results in the disadvantage of not being instantaneous.

An additional requirement is that the diameter of the antenna circle must be

several wavelengths in order to obtain adequate resolution. This characteristic makes

Doppler systems better suited for very high frequency (VHF) and above.
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3. Interferometer DF

DF systems based on interferometers compare values of a specified signal

parameter measured on two identical antennas (or groups of antennas) to derive the angle

of arrival (AOA) of the signal. The most common parameters used for Interferometer DF

measurements are amplitude, time of arrival, and phase.

DF Interferometers use the fact that the measurement of the selected parameter

at each antenna would yield the same value if the signal arrived equally spaced from both

antennas, creating a difference null for this direction of arrival of the signal. Any other

condition will yield a difference output value which is proportional to its divergence from

the null case.

Even though the three parameters mentioned are intimately related, the most

common interferometer used for DF is the phase-interferometer. This study will

concentrate on a specific implementation of this technique on an HFDF SSL system. The

characteristics of a phase-interferometer will be covered in greater depth in the next

chapter.

C. PURPOSE OF THE THESIS

The purpose of this thesis is to investigate the magnitude of the error induced in a

phase-interferometer HFDF SSL system by the antenna. The research will include the

analysis of two HFDF SSL antenna arrays and the DF algorithm employed by the

Southwest Research Institute of San Antonio, Texas (SWRI) in its land-based HFDF SSL
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system. The Numerical Electromagnetics Code (NEC) will be used to model the antenna

characteristics, array geometry, and ground conditions and to simulate real DF operation.

To provide framework for the analysis of the system, a tactical scenario will be

developed. This scenario will include the characteristics of medium range military land

operations. as well as land based anti-guerrilla and anti-drug operations.

Specific areas of investigation described in this paper include: (1) discussion and

analysis of phase-interferometers and the effects of ionospheric conditions on HFDF SSL

errors; (2) analysis of the characteristics of the antennas selected; (3) modeling and

analysis of the antenna array geometries used by SWRI; and (4) analysis and comparison

of theoretical and simulated outputs of the HFDF SSL system and the determination of

the magnitude of the errors generated by the antenna arrays and their effect on emitter

location.

D. TACTICAL SCENARIO

The following theoretical scenario was developed for this research. When possible,

it includes the characteristics of typical medium-range military land operations, as well

as land-based anti-guerrilla and anti-drug operations. The area of operations is located

near the equatorial region and the terrain conditions include the highlands (with altitudes

that range from 6,000 to 10,000 feet) and the Amazon jungle. The system is intended

to be used all year round and any time of day or night.

The area over which the system (including the antenna array) is to be deployed will

usually be constrained to a square of less than 300 by 300 meters. The DF antenna array

7



should allow for easy assembly and disassembly, so it can be transported to other

locations when required.

The expected distance to target emitters will range from 300 to 500 km and the

operating frequencies will range from 3 to 15 MHz. Most of the target emitters will be

ground-based, but occasionally air-based emitters may be of interest. The type of signals

the DF system is expected to work with are single sideband (SSB) and frequency-shift

keying (FSK).

8



II. HIGH FREQUENCY SINGLE-SITE-LOCATION DIRECTION FINDING

A. THE CONCEPT OF A PHASE-INTERFEROMETER

A phase-interferometer is a DF system that uses an array made up of one pair (or

more) of identical antenna elements and determines the direction of arrival of a received

signal from the relative phase measured between two antenna elements. The antennas used

in this kind of systems are generally omnidirectional or have broad beamwidths (on the

order of 90 degrees or more). The difference in the phase received by two antennas which

are equally displaced from the incoming wave will be zero, creating a phase difference

null along the boresight of the interferometer antenna pair.

In a phase-interferometer DF the signal is effectively received at the phase center

of each antenna and the position of the phase center relative to each antenna is a function

of the angle of arrival of the wave front. If the antennas are identical the distance between

the phase centers and the slope of the line connecting them is independent of the angle

of arrival of the wave front.

The line connecting the phase centers of two antennas in a phase-interferometer DF

is called a baseline. An interferometer can have more than one baseline. An interferometer

system that employs only 2 antennas is called a single baseline interferometer and if it

employs more than 2 antenna elements it is called multiple baseline interferometer.

Interferometers have the advantage of not requiring pattern scanning as the previous

DF systems. They are particularly useful for short-duration signals.

9



Before the study of details of a phase-interferometer the concept of a "plane wave"

must first be defined. Since electromagnetic waves propagate as an expanding sphere as

they move away from the transmitter, the shape of the wave front describes a circle in

any plane that contains the transmitter. At long distances (many wavelengths away), the

case of interest for HFDF SSL, this wave front can be treated as a straight line. When it

reaches two antennas whose separation is many times smaller than the distance to the

emitter, it will be referred to as a plane wave.

Baseline orientation is defined as the angle between the baseline and geographic

true North. For convenience and to simplify the analysis, true North is considered to be

aligned with the positive "x" axis of a 3-dimensional coordinate system, as shown in

Fig. 1.

NORTH
001

WEST /_EAST

/
//

/

SOUTH

Fig. 1.- Baseline Orientation.
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B. PHASE-INTERFEROMETER BASELINE TYPES

1. Single Baseline

A phase-interferometer DF system that employs only two antennas is called

a single baseline interferometer and its geometry is shown in Fig. 2. In this interferometer

configuration, the incident electric field intensity at antenna 1 will be

E, =f E e "' 1

where

E = magnitude of the electric field intensity,

= free space propagation constant = 2n/, and

x = distance traveled by the wave.

Similarly the electric field intensity at antenna 2 will be

E 2 = E e X - -dmO) (2)

where

d = distance from antenna 1 to antenna 2 and

V = elevation angle of arrival of the plane wave.

Only the relative values of phase are of interest so antenna 1 can be taken to

be the reference and the electric field intensities become E, = E and E, = E e 4 .e

11



a / PP.NE WAVE ,

V d
ANTENNA 1 ANnENNA 2

Fig. 2.- Single Baseline Phase Interferometer.

Therefore

Et - e NC  (3)

2
and the signal received at antenna 1 leads the signal received at antenna 2 by the phase

angle

D12 = Pd cosO (4)

From this relation the angle of arrival of the plane wave can be calculated by

D 1. (5)

By making the length of the interferometer baseline larger, the angle 0 can be

determined with greater precision and the effect of phase measurement errors on 4)t2 will

12



decrease. On the other hand, a greater number of ambiguities is introduced since 0,2 Can

only be measured within 27 radians. For 0 < A 012 < 2n,

A 0 12 
+ N(2n)

cose2x d(6)

and

d (C )=A 01(cs) _ 1 + N .(7)

The second term of this last expression is called the "interferometer

ambiguity", since it gives the number of ambiguities that are introduced in the single

baseline interferometer by the choice of baseline length, d/X. From Fig. 3, for no

ambiguities to occur, a baseline length of less than one-half wavelength is needed.

20 I-t

0 IN m mU

Fig. 3.- Phase Interferometer Ambiguity Function Diagram.
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Thus in a single baseline interferometer, an ambiguity of ± nr/2 about the

baseline occurs because of symmetry when the antenna phase centers are separated by

more than one-half wavelength. Additional ambiguities occur for elements spaced at

distances larger than one wavelength because the value of 0 starts repeating when the

phase difference, 0 12, exceeds 1800.

To resolve the second kind of unbiguity the antenna phase centers are required

to be at a distance less than one-half wavelength. For the first ambiguity to be resolved

the field of view of the antenna array can be limited by using subsidiary front and rear

pointing antennas and comparing their amplitudes. Alternatively, a second baseline can

be used and their phase differences combined.

In a single baseline interferometer when the elevation angle of the incident

wave is not zero, the locus of points that produce the same phase delay forms a cone of

revolution at at the axis of symmetry between antennas 1 and 2. The exact direction of

arrival of the incoming signal cannot be determined in this case because various

combinations of azimuth, , and elevation, V, can give the same value of phase delay.

Therefore, a two-element phase system provides the possibility of measuring

the angle of arrival, 0, of an elevated wave, bit in an ambiguous way. There is also a

lack of sensitivity to elevation angles near broadside for a 2-element antenna array. To

accurately determine the angle of arrival of a wave both in azimuth and elevation, the

phase measurements of two or more interferometer baselines must be combined.

14



2. Multiple Baselines

Interferometers with more than one baseline allow the use of longer baselines

to increase the aperture of the array while keeping at least one short bas eline (less than

one-half wavelength) to resolve ambiguities.

By increasing the aperture of the array, the angle of arrival of a signal can be

determined with greater precision. The resolution of a multiple baseline interferometer is

given by the widest antenna pair (baseline).

This study will analyze a multiple baseline phase-interferometer antenna array

developed by SWRI. In this interferometer the 3-dimensional angle of arrival of a plane

wave is resolved by using the phase across two apertures that are not parallel.

Consider the coordinate system for a non-parallel baseline interferometer, as

shown in Fig. 4, with three antennas located at Po(0,0,O), P(xj,yz 1), and P2(x2,y2,z2).

Antenna Po is the reference antenna and its phase center is located at the

earth's surface. The computed values of azimuth and elevation will be referenced to a

plane which is tangent to the earth's surface at Po.

Let the shortest distance between a normal to the plane wave that goes through

antenna P, and the point P, be PAP1. Similarly, let the shortest distance between a

normal to the plane wave, passing through antenna Po and the point P2 be P/2 "

15



z

IM PINS VAWR
t

AsA

X... ... I ".

Fig. 4.- Coordinate System for Non-Parallel Baseline Interferometer.

Assuming a plane wave arrivinag from azimuth, t, and elevation, ~jwhere

Nf= 900'- 0, the phase difference induced on each base line is given by

Phase difference P0P, = T-P = (8)

Phase difference PP P(,,)=P (9)

where

S1 .distancefromP toP and

TOP-= distance from P0 to Pq.

To derive an expression for T7A the coordinates of point P A must first be

found. From Fig. 4,

16



tan - 2Y  (10)
XA

therefore

YA fi XA tan (11)

in addition

xA
cos4 = (12)

then

XA 2 yA = XA (13)cos,

and finally

ZA ZA

XA72 XA (14)

The coordinates of PA can now be expressed as

l A'X a 'xA tanfll4s  (15)

XA ,XA tan cos

therefore the distance T becomes

AI-- = (xA xI)2 + (YAYI) + (zAZ) 2  (16)

17



and ( 2
(P -- ) = (xA-x,) + (xAtan -y) - +y,) " 1os (17)

YX + Cos*

Next, to minimize this distance

AP 0 (18)

Using this expression and solving or xA, YA and zA yields

xA = x, cos2 cos2w+y, cost sin cos2 +zI cost cosNi sin V , (19)

YA = xAtanO , (20)

and

2A = xA sec tanI (21)

The distance P can then be found by

= XA+ yA+ ZA (22)
2 2 222

or

poP = xI cos cos V + y, sin cosVi + z, sinV  (23)

The same procedure can be repeated for TPyP to find

P = x2 cos cosVi + y2 sin cosVi + z2 sin'W (24)

18



For a plane wave arriving from azimuth, , and elevation, 4f, it is possible

to express the phase difference induced in each baseline measurement as the distance a

wave travels between points PA and P, to point Po, as

POI (x, cost cosNI + y, sinO cosV + z, siniV) (25)

and

P2= (x2 cos cosyV + Y2 sine cosV + Z2 siny) (26)

In practice, the values of the coordinates of the three antennas and the

frequency of the incoming signal are known, and the phase difference Pol and Po2 can

be measured. The two equations and two unknowns can be solved for the azimuth, , and

elevation, iy. of the incoming wave.

To simplify the process, the following variables can be defined as

a, = )2iX2 - .jiJ 1 (27)

a - L(28)

19



a3 = ( ) - LiK-)Z2 (29)

b, = zIx 2 - z2x1 , (30)

b2 = z1y 2 - z2y, , (31)

and

c -YtX2 -y 2x1 (32)

Solving the set of simultaneous equations in terms of these variables yields the

following expression for the elevation angle of arrival

sin-' Iab +a2b2  b1 1 bc-a 3 _a-a,  (33)

and for the azimuth angle of arrival

tn a, - b, sin V  (4
4) = tan-' 1 a+bsl (34)

-a2 + b 2 siny

C. IONOSPHERIC CONSIDERATIONS

1. Propagation Modes

The ionosphere plays an essential role in the determination of target location

when using an HFDF SSL system. The ionosphere is the region of the atmosphere

composed of gases which are primarily ionized by solar radiation in the ultra-violet to
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X-ray range. It extends from about 50 kin to 1000 km in altitude and is an amorphous,

nonhomogeneous, and extremely turbulent plasma [Ref. 3].

The ionosphere is usually modeled as a series of layers that vary in height and

electron density. For all practical purposes 3 layers have been identified in the ionospher-

D, E, and F.

The D-layer extends from 50 km to 90 km and exists only during daylight

hours. It is an absorptive layer, where the lower HF frequencies are attenuated more than

higher frequencies.

The E-layer extends from 90 km to 130 km and although at night it is quite

weak, it is considered a permanent layer. During daylight it is used for short-to-medium

range propagation.

In the E-region height at about 100 km, a highly ionized layer occurs at

various times known as the Sporadic E (Es) layer. This transient layer of short duration

appears during daylight allowing unexpected propagation of high frequencies.

The F-layer is the most important layer for long distance communications. It

exists at 130 and 500 km altitude and is a permanent layer. Throughout the year in low

latitudes and during the summer in high latitudes, the F region splits into two layers, F,

and F2, after sunrise.

The lower layer, F,, is at a height of approximately 200 km and is present only

during daylight hours. The higher layer, F2, occurs at approximately 300 km and has the

highest ionization density.

A plot of ionospheric electron density versus height is shown in Fig. 5.
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During daylight, the lower frequencies of the HF band amt highly attenuated

by the D-layer and efficient long distance coomunication is in the range of 10 to 20

MHz. At night, higher frequencies are not reflected from the weaker nighttime ionosphere

and the lower portion of the HF band (2 to 10 MHz) must be used.

To comply with the tactical scenario the HFDF SSL system must then be able

to cover 2 to 20 MHz.

The term "propagation mode" refers to the path of the signal through the

ionosphere and the number of reflections (hops) that occur between the transmitter and

receiver (emitter to HFDF SSL in this case). Propagation modes are identified by

numbers and letters which represent the number of hops and the name of the layer where

each reflection occurs.
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Examples

212 = A path with 2 reflections from the F2-layer.

F2Es = One reflection from the F2-ayer followed by a reflection from the

Sporadic E-layer (also called an N-type reflection).

F2EsF2  = One reflection from the F2-layer followed by a reflection from the

Sporadic E-layer and then another F2-hop (called an M-type reflection).

Proper identification of the mode of propagation is critical for HFDF SSL

operation. Incorrect path assumptions create errors in final position determination.

2. Ionospheric Tilts and other Effects

Variations of the ionization gradient with geographical position are usually

called "ionospheric tilts". Because the effective tilt of an ionospheric layer depends on the

depth of penetration of a ray into the layer, a tilted layer should not be considered as a

tilted mirror [Ref. 2]. The tilt depends on the layer as well as the ray path and varies from

ray to ray. Ionospheric tilts can be lateral or longitudinal with respect to the path between

the emitter and the HFDF SSL.

Several methods are proposed for obtaining information on ionospheric tilts

and for correcting their effects on azimuth and elevation angles measured at an HFDF

SSL. The Chapman model and numerical maps based on monthly median predictions of

ionospheric parameters are two methods that do not require real-time measurements. The

use of a "check" transmitter of known position, the direct measurement of local tilt by a

pulsed sounder and doppler measurements or ionospheric profiles from vertical or oblique

incidence sounders provide real-time information on tilts. A more detailed treatment of
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each of these methods is found in Ref. 2. The DF system in this study uses a vertical

incidence sounder to determine tilt characteristics of the layer of interest.

For a single isolated propagation mode, the ionosphere acts as a mirror and the

spread of rays within a given mode is quite small. When complex mode structures are

present they produce large number of ray paths. The received signal is the.1 the vector

sum of randomly varying ray components and the resulting signal intensity varies

randomly. This effect is known as fading and is present in both short and long range

propagation paths, but for this study only the 300 to 500 km paths are considered. In

addition to fading, sky waves can exhibit changes in direction of arrival, both in azimuth

and in elevation [Ref. 4]. These changes can be rapid fluctuations generally attributed to

lack of homogeneity of the ionosphere, or long-term fluctuations due to large scale

ionospheric disturbances. Small variations in the characteristics of the ionosphere can arise

from traveling ionospheric disturbances (TID) and from other temporal irregularities.

Tine averaging can be used to counteract signal variations and to resolve the

dominant propagation mode when using a phase-interferometer HFDF SSL. The DF

system of this study uses a sliding window of 20 frames which is the average observation

over a one-second period [Ref. 5].

The earth's magnetic field is another important factor to consider in HFDF

SSL operation since it modifies the phenomena of ionospheric refraction. It "splits" an

incident wave into two polarization components, each with different propagation velocities

and attenuations. These components are called the ordinary and extraordinary waves. The

extraordinary wave suffers much higher absorption, thus useful sky wave propagation
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almost always takes place through the ordinary wave [Ref. 6]. For transverse or quasi-

transverse propagation, the usual mode for HF sky-wave propagation except near the

magnetic poles, the critical frequency of the ordinary wave is the same as that calculated

neglecting the earth's magnetic field [Ref. 6]. Only the reflected ordinary wave must be

considered in this study.

The earth's magnetic field also changes the polarization of the reflected wave

with respect to the incident wave. A plane-polarized incident wave is converted into an

elliptically-polarized reflected wave. When the direction of propagation forms an acute

angle with the direction of the magnetic field, the reflected ordinary wave will be left-

hand elliptically polarized, and the extraordinary wave right-hand elliptically polarized.

If the angle is obtuse, the reverse case is true. Generally in the northern hemisphere the

downcoming ordinary wave is polarized in the left-hand sense and in the southern

hemisphere it is polarized in the right- hand sense [Ref. 6]. The incoming sky wave will

then have vertical and horizontal electrical field components and since the interferometer

compares the signal received by two identical antennas, the polarization of the antennas

is not a critical issue. Antenna polarization can become an important issue if both receive

antennas are not correctly aligned with each other or if the polarization characteristics are

not the same.

An extensive analysis of polarization error of a two element interferometer has

appeared in the Russian literature [Ref. 7]. These studies show that significant phase

errors, approaching 1800, can occur independent of spacing error, when the antennas do

not have identical polarization characteristics.
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D. HFDF SSL VERTICAL TRIANGULATION

The goal of an HFDF SSL is to determine the position of a transmitter with a

moderate degree of accuracy and over a reasonably wide range of distances, operating

frequencies and ionospheric conditions. From measurements of the angle of arrival of a

signal position fixing is achieved using a technique called vertical triangulation. Utilizing

a single station makes the system simple and inexpensive to install and maintain,

compared to a network of DF stations.

Appleton and Barnett first used vertical triangulation in HF propagation in 1924

[Ref. 81, using the gcometry of Fig. 6. They applied a thin-ionosphere approximation

model, assuming a mirror reflection at point L. From the distance, d, and elevation angle

of arrival, V, they deduced the height of the ionospl'ere.

This procedure also assumes a uniform ionosphere, a flat earth and straight ray

paths. Later studies have demonstrated that the structure of the ionospherm is not uniform.

Refraction bends ray paths and the effect of curvature of the earth must be included for

long distances.

The HFDF SSL problem of emitter location is solved from receiver site information.

Knowing the elevation and azimuth angles of arrival of the signal and the height of the

ionosphere, the bearing and distance to the emitter are determined. For accurate

measurements, the effects of ray refraction in the atmosphere, earth curvature and

ionospheric structures should be included. Ray path determination is simple up to the

point where rays enter the ionosphere. The exit path from the ionosphere to the HFDF

SSL station depends on the electron density distribution.
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If this distribution were accurately known, ray tracing methods for calculating

emitter-receiver distance are available a. computer codes. Unfortunately, the electron

density structure of the ionosphere is rarely known with sufficient precision to determine

the amount of ionospheric penetration which has occurred.

A vertical sounder can be used to determine the virtual height (h') of the apparent

reflection point as shown in Fig. 7. With the virtual height and the angle of arrival of the

incoming signal, vertical triangulation is used to calculate distance to the emitter.

The HFDF SSL system under study uses a sounder to obtain ionospheric

information for the tactical scenario developed in Chapter I. With 300 to 500 km ranges

expected, vertical triangulation can be performed using the flat-earth, flat-ionosphere

approximation [Ref. 9].
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The distance to the emitter is:

d = 2( h) (35)

tan N

where

h' = virtual height of the ionosphere,

d = distance between emitter and receiver and

%V = elevation angle of arrival of the signal.

From this expression a family of curves of virtual height versus elevation angle for

various distances are produced in Fig. 8.

E. TYPICAL HFDF SSL PATHS

Based on ionospheric considerations of this chapter and the tactical scenario of

Chapter I, the characteristics of typical HFDF SSL paths can be established.
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The objective of this research is to analyze the effects of errors introduced in the

HFDF SSL process by the antenna array. For this investigation the assumptions are (1)

the virtual height of the ionosphere is known and (2) the effects of ionospheric tilts can

be accounted for.

To determine the performance of the antenna arrays, values of the minimum and

maximum elevation angles of arrival of the incoming waves must be determined. Using

the transmission curves of Fig. 8, for virtual heights of the E-layer and the F2-layer at

distances between 300 and 500 kin, it is seen that elevation angles of arrival vary from

250 to 650.
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I. NEC MODELING

A. BACKGROUND

The Numerical Electromagnetics Code (NEC) is designed for modeling of the

electromagnetic response of general structures. NEC was developed by the Lawrence

Livermore National Laboratory for the Naval Ocean Systems Center (NOSO). It uses an

electric field integral equation to model wire-like objects, and a magnetic field integral

equation to model closed surfaces with time harmonic excitation [Ref. 10]. For structures

containing both wires and surfaces the two equations are coupled together.

NEC solves the integral equations numerically via the Method of Moments. Finitely

conducting ground effects can be included in the model, in addition to free space and

perfect ground conditions. Two alternative models are provided for finitely conducting

ground. The Reflection Coefficient Approximation uses image fields modified by Fresnel

reflection coefficients and is valid for structures located at least 0.1 wavelengths above

ground. The Sommerfeld integral formulation for the near field at the interface provides

an accurate solution for elements above, below, or penetrating the ground, but with a

substantial cost in computational resources.

NEC permits excitation by voltage sources on the structure or by incident plane

waves of specified polarization. Outputs include radiation patterns, power and directive

gains, feed point impedances, ohmic losses, efficiency, wire and surface currents and
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charge density, maximum couplings, near E and H fields, scattering cross section, and

average gains. A detailed description of the code is found in Ref. 11.

B. SWRI HFDF SSL SYSTEM DESCRIPTION

The HFDF SSL system modeled in this thesis employs the phase-interferometer

technique. A two orthogonal-baseline antenna array determines the three-dimensional

angle of arrival of a signal as described in Chapter II. The system has been developed by

SWRI [Ref. 12], and is designed to be a real-time computer-controlled HFDF SSL. It

provides DF capabilities for ground and sky wave HF propagation for the 2 to 30 MHz

frequency range at ranges up to 1100 km. The system is intended for tactical/transportable

operation. The system block diagram is shown in Fig. 9. Three main components can be

identified as:

(1) two, seven-element interferometer antenna arrays,

(2) automatic DF acquisition, processing and display system and

(3) ionospheric sounder system.

This research study will concentrate on the analysis of the two antenna arrays. The

DF processing algorithm used by SWRI is used in the evaluation of the effects of errors

induced by the antenna arrays under different ground conditions.

1. Low Band Antenna Array

The low band antenna array is intended to cover 2 to 10 MHz by seven

identical vertical, square crossed loops. The antenna elements are placed in an "L" shaped

array as shown in Fig. 10. Each orthogonal arm of the array contains three antennas
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which are placed along a line at different distances. A central antenna (reference) is

located on the vertex of the array and allows multiple baselines to be selected on the

interferometer., It is diagonally symmetric, that is, each baseline on one arm (formed by

the central reference antenna and one of the antennas of the arm) has an image on the

other arm. Because of this characteristic the system can compare the phase of one

baseline with its equivalent on the other arm and by applying phase-interferometer

techniques it can find the angle of arrival of a signal.

The shortest baseline of the low band array is 13 meters long, less than one-

half wave length at 10 MHz (15 meters). This is the highest frequency of the array for

unambiguous operation. The characteristics of the low band elements are:

Antenna type: Crossed Loops

Orientation: Vertical

Element shape: Squaie loop

Frequency range: 1.5 - 10 MHz

Size: 5 foot / side

Number of elements: 2 orthogonal loops

Height above: 0.15 m

Vertical distance between elements: 0.05 m

Cross section: 0.05 m

Material: Aluminum and fiberglass

The geometry of a single element of the array is detailed in Fig. 11.
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Fig. 10.- Interferometer Low Band Antenna Array.

2. High Band Antenna Array

The high band antenna array, designed for 10 to 30 MHz has seven identical,

vertical monopoles, placed over a wire mesh ground screen (counterpoise). It is also an

"L" shaped array but with different dimensions than the low band one. It is also

diagonally symmetric as shown in Figure 12.
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Fig. 12.- Interferometer High Band Antenna Airray.

The shortest baseline of the array is 4.33 m, and is used to resolve ambiguities.

This is less than one-half wavelength at 30 MHz, the highest frequency of operation. The

characteristics of the high band array elements are

Antenna type: Monopole

Orientation: Vertical

Frequency range: 10 - 30 MHz

Size: 6 feet
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Height over ground: 0.15 m

Cross section: 0.05 m

Material: Aluminum fiberglass

Ground screen: 6 x 6 feet grid with6 inches spacing

Screen radials: 6 feet radials every 450

Radial wire diameter: 0.01 m

The shape of a single element of the high band antenna array is shown in

Fig. 13.

C. COMPUTER MODEL DEVELOPMENT

1. Dimensions Considerations

The first step in developing a numerical model of the two antenna arrays is to

define the geometry of the elements and their physical location within the array.

The second step is selecting the '--ngth of wire segments used to model each

antenna structure within the guidelines of the NEC code specifications. Since current is

computed at the center of each segment, the length of the segments partially determines

the resolution of the currents in a NEC model. Critical regions of the antenna require

smaller segment lengths.

The maximum segment length recommended in NEC is < 0.1 X. Additionally,

the NEC segment length for 32-bit double precision applications is > 10.8 1.
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Applying these two constraints to 2-20 MHz the segment length limits were

calculated as:

Frecuency Wavelencth Maximum Minimum

2 MHz 150 m < 15 m 0.15 * 10 - 5 m

5 MHz 60 m < 6 m 0.6 * 10-6 m

10 MHz 30 m < 3 m 0.3 * 10-6 m

15 MHz 20 m < 2 m 0.2 * 10-6 m

20 MHz 15 m < 1.5 m 0.15 * 10 - 1 M

From these calculations for the worst case conditions, the segment lengths

should be within the range of 0.15 x 10' m to 3 m for the low band array and 0.3 x 10-6

m to 1.5 m for the high band array. The model was adjusted to verify that it contained

the minimum number of segments to reduce computation time, while maintaining the

segment lengths within the limits of acceptable calculation accuracy. The segment lengths

of the model were selected to be from 0.51 m to 1.72 m for low band and from 0.15 m

to 0.91 m for high band. In addition, segment lengths were selected to comply with a

NEC restriction for errors of less than 1% as

Segment length / wire radius > 2.

Segment length limits had previously been selected so dimensions of the radius

of all the wires in the model were held to

low band < 0.25 m and

high band < 0.07 m.
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The maximum wire radius used in the computer model was 0.05 m for both

arrays, less than the NEC requirement above. Also, when modeling structures over ground

NEC imposes a restriction for wires placed horizontally close to ground as

( h 2 + a 2 )112 > 10- 6  , (36)

where

h = height of the horizontal wire over ground,

a = wire radius and

X = wavelength.

Only the high band antenna array contained horizontal wires close to ground

(the wire mesh). For these conditions and 20 MHz, the worse-case frequency, the wire

height of the mesh was set 0.001 m above ground to satisfy NEC guidelines for horizontal

wires near ground.

2. Symmetry Considerations

NEC includes capability for exploitation of structure symmetry to simplify

model development and to reduce computational requirements. Both arrays exhibit partial

diagonal symmetry and by using the Numerical Green's Function (NGF) option of NEC,

the symmetric portions of the structures can be evaluated and the factored interaction

matrix saved in a file for later use. The complete solution can be obtained without repeat-

ing calculations for the symmetric data on file. This feature is particularly useful for the

high band model because of the large number of segments involved in modeling the wire

mesh for every monopole of the array.
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3. Ground considerations

The Sommerfeld method of ground interaction was used to provide an accurate

solution for the wires close to ground in both arrays. "Poor" ground and "good" ground

parameters were used in addition to free space and perfect ground to thoroughly cover

effects which were influenced by installation conditions. The ground constants chosen are

the following

GROUND CONDUCTIVITY RELATIVE DIELECTRIC
CONDITION (F) CONSTANT ()

Good Ground 0.01 mhos/m 30

Poor Ground 0.001 mhos/m 5

These ground parameters were used with a separate program called SOMNTX

to generate a ground interaction data file, containing values required by NEC when using

the Sommer-feld option.

D. NEC DATASETS

The NEC datasets constructed for the high and low band antenna arrays used by the

HFDF SSL phase-interferometer are listed in Appendix A.
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IV. PERFORMANCE OF THE ANTENNAS

An HFDF SSL system is always used to analyze the p-nformance of the antennas

in the receive mode so the Reciprocity Theorem was used to characterize the arrays for

all performance parameters except feed point receive-current phases. When calculating

angle of arrival, the more resource-consuming receive mode of excitation had to be used.

A. ANTENNA INPUT IMPEDANCE

Input impedance is an important performance parameter of an antenna and because

its value depends on the electrical configuration and dimensions of the antenna it provides

an indication of the validity of a numerical antenna model.

To verify the accuracy of the crossed-loop NEC model the impedance from NEC

was compared to values calculated by a theoretical method.

In the 2 to 10 MHz frequency range, the 5 foot squre loops are a small antenna

compared to the wavelength. These small loops behave as if they were "magnetic dipoles"

with highly inductive input impedance. The method proposed by Ref. 13 was used to

calculate the input impedance of the vertical square loops. This method assumes that the

square loop can be analyzed as a shorted transmission line of wire radius which is very

small compared to the loop dimensions and to the wavelength. The reactive part of the

input impedance is a function of the loop perimeter wire radius. Thus an equivalent

transmission line shorted at one end can be used to determine its impedance. Using this
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model, the input impedance of the shorted lossless transmission line is equal to the

reactive part (Xin) of the input impedance of the loop as

x jZ o tan(kl) , (36)

where

k = wave number or propagation coefficient and

I = transmission line length.

Without losing generality, the transmission line length, I, can be approximated as

half the perimeter and the characteristic impedance of the transmission line (Z.) then

becomes

-= 276 lo (37)

where

1 = (loop perineter)/2,

s = (loop area)/l and

r = wire radius of the loop.

Applying the preceding fonnulas at 5 MHz, a wire radius of 0.05 m, and a loop side

length of 1.524 m,

= (1524x4J = 3.048m , (38)

( 5 2423 0.762m (39)
3.048
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and

k 2n 2n)(~ 0. 104 m .(40)

Then

0 276log(276 = 326.5 Ohms (41)

and

Xi,, j ( 326.5 ) tan [0.104 x 3.04 (42)
Sj 107.9 Ohms.

The NEC value for the imaginary part of the input impedance was 110.5 Ohms,

which agrees well with the approximate theory.

For the resistive part of the loop input impedance the least squares technique of

Ref. 13 yields

Rit = a [tan (k.p b (43)

where

k wave number or propagation coefficient and

p perimeter of the loop.
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In addition, a = 1.126 and b = 3.95 for a square loop. Using this formula, 1 =

0.014 Ohms. The resistive part of the input impedance from a NEC calculation agrees

well at 0.013 Ohms.

The high band antenna array is composed of seven vertical monopoles, each one

with an underlying wire mesh. To verify the accuracy of the NEC model, the input

impedance of a monopole of the same characteristics was calculated and compared to the

NEC result.

The input resistance of an ideal monopole over perfect ground is half the radiation

resistance of a dipole whose length is twice the monopole height. From Ref. 14 the radia-

tion resistance of a short dipole is

R d 2 P r 20 ( 44)

Since the height of the vertical monopole is 1.83 m, the equivalent length of its

dipole counterpart is 3.66 m. By using this length (L) and a frequency of 15 MHz,

Rrad 20 20(3.667n 6.6 Ohms .(45)

The radiation resistance of the monopole is thus approximately 3.3 Ohms, assuming

a lossless case. The value of the input resistance of the monopole calculated by NEC code

was 3.74 Ohms, close enough to be considered adequate.
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B. SMITH CHART INPUT IMPEDANCE ANALYSIS

An important verification of the behavior of an antenna through a frequency range,

is to analyze its input impedance using the Smith Chart. When plotted on a Smith Chart,

the input impedance of the antennas should show smooth variation with clockwise

rotations and describe a smooth curve, as frequency is increased over the operating range.

The model of the electrically small crossed loop was first tested for the 2 to 5 MHz

range for good ground (e=30 and Y--0.01), poor ground (F=5 and Y--0.001), perfect

ground and free space conditions. The results of the different runs are shown in Table B-I

of Appendix B. Each set of data was then normalized to the lowest value of its set and

the resultant input impedances plotted on a Smith Chart.

As shown in Fig. 14 and Fig. 15, the input impedinces show smooth variation and

describe highly reactive curves on the Smith Chart, confirming that the NEC results of

the small crossed loop impedance are as expected.

Next, the NEC model of the vertical monopole with wire mesh was used to

construct a Smith Chart of input impedance for 10 to 20 MHz for free space, good

ground, poor ground, and perfect ground conditions. The results are in Table B-2 of

Appendix B. The resulting Smith chart plots are shown in Fig. 16 and Fig. 17 and are as

expected.

C. AVERAGE POWER GAIN

Another parameter used to verify numerical antenna models is the average power

gain of the antenna. Since it accounts for antenna efficiency, hence radiation resistance,

46



CROSSED LOOP ON FREE SPACE, 2 TO 10 MHz

CROSSED LOOP OVER PERFECI GROUND. 2 TO 10 MHz

Fig. 14.- Crossed Loop Input Impedance (Free-Sp; Perfect-Gr).
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CROSSED LOOP OVER GOOD GROUND, 2 TO 10 MHz

CROSSED LOOP OVER POOR GROUND. 2 TO 10 MHz
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MONOPOLE ON FREF SPACE *10 TO 20 MHz

MONOPOLE OVER PERFECT GROUND, 10 TO 20 MHz
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MONOPOLE OVER GOOD GROUND *10 TO 20 MHz

MONOPOLE OVER POOR GROUND, 10 TO 20 MHz

Fig. 17.- Monopole Input Impedance (Good and Poor Ground).
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it is a measure of validity of current distribution at the feed point.

The average power gain is defined as the integral of the antenna power gain per unit

solid angle,

I fa G d Q (46)

where

G,,s = average power gain,

P= antenna power gain and

= solid angle.

When the solid angle is 47c, the average gain can be expressed as

agPd (47)

where P,,,d is the total power radiated, P,, is the input power at the antenna terminals,

and K is I for free space, 2 for perfect ground and between 0 and I for lossy ground. Pad

can, in turn, be found by integrating the complex pointing vector, S = (E x H'),2

as

1rad Re (Ex,.)ds (48)
ffExsd

where

E = electric field intensity and
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H = complex conjugate of the magnetic field intensity.

In the far field,

, R2 f E2 d for R--0 , (49)
2 .49

where

= intrinsic impedance of the medium and

R = distance.

The input power at the antenna terminals can be found by

P il Re [ Vo P(0) , (50)

where

V0 = source voltage and

I'(0) = complex conjugate of current at antenna terminals.

For a lossless antenna the radiated power is equal to the input power and the

efficiency is 100%. The average gain will depend upon K (i.e. the ground conditions).

The lossless HFDF SSL antenna elements were first considered in free space where the

expected value of the average power gain is 1. For operation over ground, average power

gain should be 2. The NEC model was also tested over the two types of lossy ground
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specified previously, good ground, £=30 and o=0.01, and poor ground, E=5 and

o=0.001.

The average gains for the NEC models of the crossed loop and monopole antennas

with these ground conditions are shown in Figures 18 and 19.

The average gains for the NEC models are weil within ± 10% of theoretical values

for the lossless cases, providing additional confidence of numerical model validity.

D. RADIATION PATTERNS

Radiation patterns were calculated for both antennas to provide a final certification

of model validity. Elevation patterns of the crossed loop were obtained for 2, 5 and 10

MHz, under the four ground conditions, free space, perfect ground, good ground, and poor

ground. A horizontal radiation pattern for 5 MHz and perfect ground conditions verified

the omnidirectionality of the total gain in this plane. The patterns are shown in

Appendix C.

Radiation patterns of the vertical monopole with wire mesh counterpoise were

produced for 10, 15, and 20 MHz, under the same four ground conditions. The elevation

patterns are shown in Appendix D and include the vertical, horizontal, and total power

gain curves. An azimuth pattern at 15 MHz and perfect ground verified the omni-

directionality of the total gain of the monopole. This pattern is also shown in Appen-

dix D.

From the preceding, the conclusions are that since long-range HF propagation

generally occurs at higher frequencies and lower angles, the choice of using vertical
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monopoles for the high band array is good. Similarly, the use of the vertical crossed loops

is a good choice for the low band array, since shorter range HF propagation uses lower

frequencies and high elevation angles.
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V. HFDF SSL ERROR ANALYSIS

A. DF MATHEMATICAL MODEL

If the actual location of the antennas in the "L" shaped arrays is included in the

equations for angles of arrival from Chapter U, the expressions can be further simplified.

Recognizing that all antennas of the array are located at the same height above the

ground and placing the reference antenna which is located at the vertex of the array at the

origin of the coordinate system, zi , b, ,b2 and a2 become zero and can be eliminated

from equation 33, reducing the expression for elevation angle of arrival to

= c - a -a2 (51)

and the azimuth angle to

a°,
_tan- (52)

-a
2

These expressions can be further simplified by aligning the first ann of the

interferometer with the y-axis and the second arm with the x-axis.
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The antenna coordinates x, and y2 become equal to zero, which when applied to

variables defined previously result in

a, ! "a"x 02 " ) Iy and c = x2 y,.

The elevation angle of arrival of the wave can thus be expressed as

1 0x2 y,) _ -
2 (53)Av -_ sin -' X 2--P I P2 I

X2 y1

and the azimuth angle by

ta n (x2 ) 1 (54)
= 4>2 (Y1 )

Since the interferometer compares the phase measured at the antennas two at a time,

one on each arm of the interferometer array, the antennas on each arm are selected to be

equidistant from the reference antenna. Incorporating these facts into the analysis and

using the specific geometry of the two antenna arrays, the x-coordinate of the antenna on

the first arm of the interferometer is equal to the y-coordinate of the corresponding

antenna on the second arm, so x 2 = yl.
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Replacing these values in equations 53 and 54 and simplifying, the elevation angle

of arrival becomes

1 9 1 (32 4D ((55)

X2

or

=cos'1 1.. X2V42 + 2 2Z (56)

and the azimuth angle,

a-J (57)

B. BEARING AMBIGUITY RESOLUTION

In both of the antenna arrays the distance between the reference antenna and the

first antenna of each arm is less than one-half wavelength at the lowest frequency (longest

wavelength), so the phase difference between these antennas will be less than 1800. As

explained in Chapter II, the phase difference is measured as modulo 180 °, therefore no

ambiguity in the measurement will occur. A different situation occurs with the rest of the

antenna pairs of the array where the phase difference between each element and the
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reference antenna can be more than 1801 and ambiguity in the measurement of the angle

of arrival occurs. A means of determining the number of 1800 differences is needed for

finding the exact baseline phase.

Each arm of the interferometer has three baselines formed by the reference antenna

and each of the antennas of the arm. The "short-baseline" is formed by the first antenna

of the arm; the "intermediate-baseline" is formed by the second antenna; and the third

antenna forms the "long-baseline". To find the exact phase difference of the intermediate

baseline, the short-baseline phase must be measured first. The number of 1800 phase rota-

tions are computed using the formula

N = [ S4[ - aci  (58)

where

% = short-baseline phase,

a = intermediate-baseline phase (unresolved),

d = short-baseline length,

d. = intermediate-baseline length, and

[] = nearest integer function.

The resolved intermediate-baseline phase can then be calculated by

4) = N(1800 ) + a (59)
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Using the same procedure the resolved long-baseline phase can be calculated by

replacing intermediate-baseline values with the corresponding long-baseline values.

Considering the validity of the phase measurements completes the mathematical

model. When the received signal is not a single plane wave, phase measurements may

correspond to phases of different components of the incoming wave (different propagation

modes) or to the vector sum of several components arriving at the antenna. If the resulting

phase measurements differ greatly from one another, as when two different propagation

modes are being received, they do not provide required information to unambiguously

define the angle of arrival.

To solve this ambiguity, the system uses a Quasi-Single Phase Wave (QSPW) test

to categorize measured phases into "phase-linear" and "non-phase-linear" values. The

QSPW test interpolates the resolved long-baseline phase to the intermediate-baseline

phase and checks for agreement within an acceptable phase window. This acceptable

window is usually set to 300. The computation performed on each arm of the interfer-

ometer can be expressed as

- (60)

where

O- resolved Intermediate Phase,

41L resolved long phase,

di = intermediate baseline length,

61



dL = long baseline length, and

ct = acceptable phase window.

If this condition is satisfied on both legs of the array simultaneously, the azimuth

and elevation calculated with these values is said to be a "phase linear frame". Tle wave

can then be considered a Quasi-Single plane wave, which is a good approximation of a

plane wave.

C. SELECTION OF ANGLES OF ARRIVAL FOR MODEL COMPARISON

A set of angles of arrival of incoming waves must be defined to effectively test both

antenna arrays. For the azimuth plane, a set of angles that exploits the 1800 symmetry of

both arrays is selected. The resultant set of angles is shown in Fig. 20.

135

270* r19

+

315 0465

00016

Fig. 20.- Test Azimuth Angles.
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Next, the elevation plane which corresponds to 0 - 900 in spherical coordinates

is considered. Elevation angles of arrival for testing the arrays are suggested by the

tactical scenario described in Chapter I and the typical HFDF SSL paths outlined in

Chapter U. From these conditions a set of angles is chosen which thoroughly tests the

array in the elevation plane, as is shown in Fig. 21.

0900

0656/ 055 •

045'
036"

- L 0006

Fig. 21.- Test Elevation Angles

D. SSL ARRAY PHASE ERROR ANALYSIS

To find the amount of error induced by the pairs of antennas in the arrays in the

phase measurements, the selected azimuth and elevation angles were combined to define

directions of arrival of plane waves. These "test" waves are "incident waves" for NEC

calculations.

The phase of currents induced in the different antennas of the arrays, when excited

by each of the incident waves, were calculated via NEC and compared with phase values

from the mathematical model. The mathematical model does not include the effects of
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antenna coupling, wave scattering, or ground conditions, while NEC does include them.

The difference between the phases produced by the two models is referred to as the

"phase error".

To select a reasonable number of multiple combinations of azimuth, elevation,

frequency, antenna pair, and ground conditions, the following cases were selected:

LOW BAND ARRAY
" Frequency: 5 MHz

* Ground condition: Good ground and poor ground

" Antenna pair: Longest baseline

• Azimuth: -1350, -0900, -0450, 0000 and 0450

* Elevation (90-0): 0250, 0350, 0450, 0550, and 065-

HIGH BAND ARRAY

* Frequency: 15 MHz

* Ground condition: Perfect ground

* Antenna pair: Longest baseline

* Azimuth: -1350, -0900, -0450, 0000 and 0450

" Elevation (90-0): 0250, 0350, 0450, 0550, and 0650

The different runs are summarized in the following subsec-tions. Figures showing

results of phase error calculations are contained in Appendix E.
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1. Low Band Array Phase Errors

Fig. E-1 presents phase errors induced by the longest baselines of arm-1 (y

axis), and arm-2 (x axis), of the low band array, at 5 MHz over good ground, for an

azimuth 0001 and varying elevation from 0250 to 0650.

The elevation angle of the incident wave was set to 0450 and the azimuth

angle varied between -I35* and 045*. Fig. E-2 shows the phase errors induced by the

longest baselines of both arms of the low band array.

Ground conditions for the above cases were changed to poor ground and the

analysis repeated. Fig. E-3 and Fig. E-4 show the resultant phase errors for the same

array.

From these figures, it is seen that for the low band array phase errors

calculated for arm-1 and for arm-2 of the interferometer with good ground conditions

were comparable with poor ground conditions. This indicates that phase errors induced

by the low band antenna array did not change significantly with ground conditions.

There is a similar phase error in both arms of the interferometer for an incident

wave as an azimuth angle of 0450 as well as from -1351. The symmetry of the incident

wave, with respect to both arms of the interferometer, is maintained for the low band

elements the same as it is for high band at these azimuth angles.

The smallest phase errors occur at the highest incident wave elevation angles.

This conforms to the electromagnetic properties of the crossed loop antennas which have

good gain at high elevation angles, and poor gain at lower angles.
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2. High Band Array Phase Errors

Fig. E-5 shows phase errors produced by the longest baselines of arm-1 (y-

axis), and arm-2 (x-axis) of the high band antenna at 15 MHz over good ground and for

an incident wave azimuth of 0000, and elevation angle varying between 0250 and 065*.

Fig. E-6 shows phase errors from the same baselines of the high band array for identical

ground and frequency conditions, an elevation angle of 0450 and azimuth angles from -

1350 to 045*. The effects of changing the ground conditions to poor ground are shown

in Fig. E-7 and Fig. E-8. These values for arm-I varied significantly from those calculated

for poor ground case. A similar effect is observed for arm-2. Ground conditions do have

a significant effect on phase errors for the high band antenna array.

When the incident wave arrives from an azimuth of 0450 and -1350 a similar

value of phase error occurs in both arms of the high band interferometer. This confirms

symmetry of the incident wave with respect to arms of the interferometer.

For good ground conditions the phase errors of both high band array arms are

larger at high inci lent wave elevation angles. For poor ground conditions the largest

phase errors were at lower incident wave elevation angles. These results suggest that

stronger antenna element coupling and inter-element scattering occurs for good ground

than for poor ground.

E. EFFECT OF SSL PHASE ERROR IN AOA MEASUREMENT

The preceding antenna phase errors do not directly represent the final angle of

arrival (AOA) errors. The actual azimuth and elevation errors also depend on specific
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algorithm sensitivity to these phase errors. As explained in Chapter II, a longer baseline

decreases the effects of phase measurement errors in determining the angle-of-arrival

(AOA) For this reason only the longest baselines were used to determine the AOA

measurements, with the shorter baselines used to eliminate ambiguities. Thus, the system

implements a wide aperture array while maintaining required ambiguity resolution

capabilities.

The magnitude of the AOA errors were determined by comparing NEC phase values

with those of the math model. The figures showing the results of the AOA error

calculations, for both the low band and high band interferometer array, are contained in

Appendix F.

Fig. F-i shows the azimuth and elevation error induced in the HFDF SSL system

by the low band antenna array. These errors were calculated for a frequency of 5 MHz,

good ground 0450 azimuth incidence varying elevation angles between 0250 and 0650.

Fig. F-2 shows the HFDF SSL error in azimuth and elevation for the same conditions but

fixing the incident elevation angle at 0450 and varying azimuth between -135 ° and 0450.

Similarly, Fig. F-3 and Fig. F-4 show the corresponding azimuth and elevation error for

the low band array over poor ground and the same conditions of incident waves for the

previous two cases.

From an analysis of these figures it is observed that the HFDF SSL azimuth and

elevation errors induced by the low band antenna array are approximately one order of

magnitude less than the individual phase errors from which they are calculated. The
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largest azimuth and elevation error of the low band array was less than 0.20 for all cases

analyzed.

Fig. F-5 summarizes errors for the high band antenna array at 15 MHz, good

ground, and an azimuth incidence angle of 0450 and elevation angles between 0250 and

0650. Corresponding azimuth and elevation errors for a fixed elevation of angle of the of

0450 and varying azimuth angles from -1350 to 0450 are shown in Fig. F-6. Equivalent

error calculations were made for the high band array, for poor ground conditions and

appear in Fig. F-7 and Fig. F-8.

There is a tendency of the system to produce larger azimuth errors at high elevation

angles of arrival of the incident wave for the high band antenna array, under good and

poor ground conditions. Azimuth errors of the high band array were approximately one

order of magnitude less than phase errors for all ground conditions and angles of arrival

of the incident wave. The largest azimuth and elevation error induced by the high band

array was found to be less than 0.50 for all cases analyzed.

The lowest phase errors occur when the incident wave arrives at 0450 or at -1350

for both the low and high band arrays. This result shows that the "L" shape geometry of

the antenna arrays has two preferred angles of arrival at 0450 and -135" for the specific

orientation of the antenna array shown in Fig. 1.

In general, azimuth and elevation errors were slightly smaller for the low band

antenna than for the high band.
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F. HFDF SSL ERROR AND SSL FOOTPRINT

The accuracy of an HFDF SSL system is measured by comparing the predicted

transmitter location to the actual position. Emitter position errors can be observed after

the application of the vertical triangulation technique to the angle of arrival of the

incoming wave.

Many factors can generate errors in HFDF SSL systems. This study was concerned

only with errors introduced by the antenna array; therefore, the lateral and range errors

introduced in the position of the emitter by bearing errors found in the previous sections

are considered.

When the virtual height of the ionosphere is assumed to be known and in addition,

a no-tilt case is assumed, the lateral error is only a function of the azimuth error intro-

duced in the HFDF SSL by the antenna array. Likewis-,, range error is dependent upon

the elevation angle error. Furthermore, the lateral and range errors form what is called the

HFDF SSL "footprint".

This footprint is usually elliptical in shape with the size of its major axis detennined

by range error, while the minor axis is proportional to the lateral error.

The HFDF SSL errors for the system under consideration can then be estimated by

applying the flat-earth flat-ionosphere model described in Chapter H, to the maximum

azimuth and elevation errors calculated in the previous sectior for each antenna array.

A value of 0.20 was used for the low band array, and 0.50 for the high band array.

Lateral and range errors of the HFDF SSL system were calculated for the largest and
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smallest emitter distances of the tactical scenario and the maximum dimensions of the

minor and major axes of the HFDF SSL footprint were then determined.

For the low band array the maximum dimensions of the major (range error) and

minor (lateral error) axes of the HFDF SSL footprint are:

EMITTER-SSL PROPAGATION MAJOR AXIS MINOR AXIS

DISTANCE MODE (RANGE ERROR) (LATERAL ERROR)

300 km E 4.3 km 2.1 km
300 km F2  5.3 km 2.1 km
500 km E 8.9 km 3.5 km
500 km F2  7.1 km 3.5 km

For the high band array the maximum dimensions of the major (range error) and

minor (lateral error) axes of the footprint are:

EMITTER-SSL PROPAGATION MAJOR AXIS MINOR AXIS

DISTANCE MODE (RANGE ERROR) (LATERAL ERROR)

300 km E 10.7 km 5.2 km
300 km F2  13.1 km 5.2 km
500 km E 22.4 km 8.7 km

500 km F2  17.7 km 8.7 km

The maximum HFDF SSL lateral and range errors occur for the high band array

where the targeted emitter is located at the larger distance specified by the tactical

scenario, and the incoming wave has an E-propagation mode. The smallest lateral and

range errors occur when the system uses the low band array, the targeted emitter is
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located at the shortest distance specified by the tactical scenario and the incoming wave

has an E-propagation mode.

71



VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The characteristics of two HF antenna arrays which are part of a phase-interferome-

ter HFDF SSL system that operates in the 2 to 30 MHz band were analyzed using the

Numerical Electromagnetics Code (NEC) and comparing the results with the ideal case.

The larger the aperture of the antenna array compared with the wavelength of the

incoming signal, the better its resolution when determining the angle of arrival of an

elevated, incoming wave. Therefore, in the HFDF SSL system of this study, the longest

baselines of the phase-interferometer were selected to determine AOA while the shorter

baselines were used to eliminate ambiguities.

The analysis included a comparison between the effects of the different ground

conditions. Special consideration was given to good ground (.,e = 30 and c = 0.01) and

poor ground (e, -- 5 and o = 0.001) cases. The high band antenna array (10 to 20

MHz), suffered the maximum coupling and strongest inter-element scattering for good

ground, where it produced the largest phase errors. For the low band antenna array (2 to

10 MHz), changing ground conditions do not affect the phase errors substantially.

There is a consistently lower phase error induced by the low band array for 2 to 10

MHz than for the high band array using vertical monopoles with a wire grid mesh

counterpoise for the 10 to 20 MHz band.
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The "L" shape of the geometry of the two antenna arrays had two preferred azimuth

angles of arrival for incoming waves. These azimuth angles were 0450 and -135,

respectively (see Fig. 1). Waves arriving from these angles induced an almost negligible

azimuth error in the DF system.

Angle of arrival errors for the high band array were less than 0.50 and were under

0.20 for the low band antenna system.

The dimensions of the minor and major axes of the HFDF SSL footprint were

calculated for the minimum and maximum emitter distances considered in the tactical

scenario. The major axis was called range error and the minor axis was called lateral

error. The maximum HFDF SSL lateral and range error of this system are 8.7 km and

22.4 km respectively. These error values occur when the system uses the high band array,

the targeted emitter is located at the largest distance specified by the tactical scenario (500

kin), and the incoming wave has an E-propagation mode.

The smallest lateral and range error were found to be 2.1 km and 4.3 km

respectively. They arise when the system uses the low band array, the targeted emitter is

located at the shortest distance specified by the tactical scenario (300 km), and the

incoming wave has an E-propagatior. mode.

The Numerical Electromagnetics Code (NEC) proved to be an exce!lent tool for the

analysis of this electromagnetic problem. It was particularly useful because of its ability

to simulate the antenna structures, the environment where they are located, and the

incoming plane waves used to test the HFDF SSL system.
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B. RECOMMENDATIONS

Future analysis of the effects of the HFDF SSL azimuth and elevation errors found

in this study, when using actual ionospheric characteristics of the near-equatorial region,

is needed.

Comparison between theoretical calculations performed in this study and

measurements of the actual system can provide information for assessing the errors

induced by other components of the system and better insight into capabilities and

limitations.
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APPENDIX A

NEC DATASETS

1) HIGH BAND ANTENNA ARRAY

CM HIGH BAND 7 VERTICAL MONOPOLES ARRAY
CM
CM 6-FOOT VERTICAL MONOPOLES
CM
CM 0.5 FEET ABOVE THE GROUND
CM
CM FEED POINT AT BOTTOM OF EACH MONOPOLE
CM
CM GROUND SCREEN 6 FEET X 6 FEET WITH 6 INCH SPACING
CM
CM ADDITIONAL 6 FEET RADIALS EVERY 45 DEGREES
CM
CM SCREEN UP 0.001 METERS FROM GROUND
CM
CM OVER GOOD GROUND
CE
GW111,1,.1524,0.,0.,.1524,.9144,0.,0.01, BUILD ONE SECTOR
GW111,1,.3048,0.,0.,.3048,.9144,0.,0.01, OF THE 6 FOOT
GW111,1,.4572,0.,O.,.4572,.9144,0.,0.01, SQUARE WIRE MESH,
GW111,1,.6096,0.,0.,.6096,.9144,0.,0.01, 0.5 FEET BETWEEN
GW111,1,.7620,0.,0.,.7620,.9144,0.,0.01, WIRES.
GW111, 1, . 9144, 0., 0., .9144, .9144, 0., 0.01,
GW111, 1, 0., .1524, 0., .9144, .1524,0.,0.01,
GW111, 1, 0., .3048, 0., .9144, .3048, 0., 0.01,
GW111,1,0.,.4572,0.,.9144,.4572,0.,0.01,
GW111,1,0.,.6096,0.,.9144,.6096,0.,0.01,
GW111,1,0.,.7620,0.,.9144,.7620,0.,0.01,
GW111,1,0.,.9144,0.,.9144,.9144,0.,0.01,
GW111,1,.9144,.9144,0.,1.293,1.293,0.,0.01, CREATE CORNER RADIAL
GMO,3,0.,0.,90.,0.,0.,0.,111.111, GENERATE THE OTHER 3 SECTORS
GW111,4,0.,-1.8288,0.,0.,1.8288,0.,0.01, ADD Y AXIS ADDITIONAL RADIALS
GW111,4,-1.8288,0.,0.,1.8288,0.,0.,0.01, ADD X AXIS ADDITIONAL RADIALS
GMO,0,0.,0.,0.,0.,0.,0.001,111.111, MOVE WIRE MESH UP .001 METERS
GW111,3,0.,0.,0.15,0.,0.,1.9788,.05, CREATE 6 FOOT MONOPOLE
GW111,1,0.,0.,0.001,0.,0.,0.15,0.05, CONNECT MONOPOLE TO WIRE MESH
GMO,0,0.,0.,0.,0.,4.33,0.,111.111, MOVE STRUCTURE TO Y-4.33 M
GM1,1,0.,0.,0.,0.,29.0,0.,111.111, CREATE ANTENNA 2 AT Y-33.33 M
GM1,1,0.,0.,0.,0.,16.67,0.,112.112, CREATE ANTENNA 3 AT Y-50 M
GMO,0,0... 0.,45.,0.,0.,0.,111.113, ROTATE STRUCTURE 45 DEG UP
GX3,1C0, REFLECT STRUCTURE OVER Y AXIS
GMO,0,0.,0.,-45.,0.,0.,0.,111.116, ROTATE STRUCTURE 45 DEG DOWN
GP SUPPFeSS GEOMETRY PRINTING
GEl END GEOMETRY DEFINITION
GN2,0,0, 0,30., 0.01 GOOD GROUND CONDITIONS
FRO, 1,0,0,15., FREQUENCY 15 MHZ
WG, CALCULATE GREEN'S FUNCTION
NX, START NEXT STRUCTURE
CM START NEXT STRUCTURE COMMENTS
CM
CM ADD ANTENNA ZERO
CE
GF,
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GW12O,1,.1524,0.,0.,.1524,.9144,0.,0.01, BUILD ONE SECTOR
GW1l20,l,.3048,0.,0.,.3048,.9144,0.,0.01, OF THE 6 FOOT
GW120,1,.4572,0.,0.,.4572,.9144,0.,0.01, SQUARE WIRE MESH,
GW12O,1,.6096,0.,0.,.6096,.9144,0.,0.01, 0.5 FEET BETWEEN
GW12O,1,.7620,0.,0.,.762f,.9144,0.,0.01, WIRES.
GW12O, 1,.9144, 0.,0.,.9144,.9144, 0., 0. 01,
GW12, 1, 0. ,.1524, 0., .9144,.1524, 0.,0. 01,
GW120, 1, 0. ,3048,0., . 144,.3048, 0., 0. 01,
G-W12J, 1, 0. ,.4572,0.,.9144, 4572, 0., 0 .01,
GW12O,1,0.,.6096,0.,.9144, .6096,0.,0.01,
GW120,1,0., .7620,0.,.9144,.7620,O.,0.0l,
GW12O,1,0., .9144,0., .9144, .9144,0 ,0.01,
GW120,1,.9144,.9144,0.,1.293-l,1.293,0.,0.01, CREATE CORNER RADIAL
GMO,3,0.,0.,90.,0.,O.,0.,120.120, GENERATE T1HE OTHER 3 SECTORS
GW12O,4,0.,-1l.8288,0.,0..1.8288,0.,0.01, ADD Y AXIS ADDITIONAL. RADIALS
GW120,4,-1.8288,0.,0.,1.,.288,0.,0.,0.01, ADD X AXIS ADDITIONAL RADIALS
GMO,0,0.,0.,0.,0.,0.,0.UiO1,120.120, MOVE WIRE MESH UP .001 METERS
GW120,3,0.,0.,0.15,0.,0.,1.9788,.05, CREATE 6 FOOT MONOPOLE
GW120,1,0.,0.,0.001,0.,0.,Q.15,0.05, CONNECT MONOPOLE TO WIREM1ESH
GP SUPPRESS GEOMETRY PRINTING
GEl END GEOMETRY DEFINITION
PT1, 111,61,0 ANTENNA 1
EXI, 5,5,0,25, -135,0,10,45
XQ,
PT1, 112,61,0 ANTENNA 2
EXI, 5,5,0,25, -135,0,10,45
XQ,
PTI, 113,61,0 ANTENNA 3
EXI, 5,5,0,25, -135,0,10,45
XQ,
PT1, 114, 61, 0 AN4TENNA 4
EXi, 5,5,0,25, -135,0,10,45
XQ,
PT1, 115,61,0 ANTENNA 5
EXi, 5,5,0,25, -135,0,10,45
XQ,
PT1, 116,61,0 ANTENNA 6
PX1, 5,5,0,25, -135,0,10,45
XQ,
PT1, 120,61,0 ANTENNA 0
EXi, 5,5,0,25, -135,0,10,45
XQ,
EN END DATASET

2) LOW BAND ANTENNA ARRAY

CM LOW BAND *7 CROSSED SQUARE LOOP ARRAY
CM
CM 5-FOOT SQUARE LOOPS
CM
CM 0.5 FEET ABOVE THE GROUND
CM
CM ORTHOGONAL LOOP 2 INCHES ABOVE AXIAL LOOP
CM
CM FEED POINT AT TOP OF EACH LOOP
CM
CM OVER GOOD GROUND
CE
GW11,3,0.,-.762,1.524,0.,.762,1.524,.05, CREATE Y AXIS LOOP TOP
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GW11,1,O.,.762,1.524,0.,.762,O.,.05, CREATE Y LOOP SIDE
GW11,1,0.,.762,0.#O.,-.762,0.p.05, CREATE Y LOOP BOTTOM
GW11,1,0.,-.762,0.,0.,-.762,1.524,.05, CREATE YLOOP SIDE
GW11,3,-.762,0.,1.574,.762,0.,1.574,.05, CREATE X LOOP TOP
GW11,1,.762,0.,1.574,.762,0.,0.05,.05, CREATE X LOOP SIDE
GW11,1,.762,0.,0.05,-.762,0.,0.05,.05, CREATE X LOOP BOTTOM
GW11,1,-.762,0.,0.05,-.762,0.,1.574,.05, CREATE X LOOP SIDE
GMO,0,0.,0.,0.,0.,0.,.15,11.11, MOVE STRUCTURE UP .15 METERS
GMO,0,0.,0.,0.,0.,13.,0.,11.11, MOVE STRUCTURE TO Y-13 M
GM1,1,0.,0.,0.,0.,87.,0.,11.11, CREATE ANTENNA 2AT Y-100 M
GM1,1,0.,0.,0.,0.,50.,0.,12.12, CREATE ANTENNA 3AT Y150 M
GM1,1,0.,0.,0.,13.,-150.,O.,13.13, CREATE ANTENNA 4 AT X-13 M
GM1,1,0.,0.,O.,87.,0.,O.,14.14, CREATE ANTENNA 5 AT X-100 M
GM1,1,0.,0.,0.,50.,0.,0.,15.15, CREATE ANTENNA 6 AT X-150 M
GM4,1,0., 0.,0.,-150.,0.,0.,16.16, CREATE ANTENNA ZERO
GEl END GEOMETRY DEFINITION
GN2, 0,0,0,30,0.01 GOOD GROUND CONDITIONS
FRO,1,0,0,5., FREQUENCY 5 MHZ
PT1, 11,2,0 ANTENNA 1 (X AXIS ELEMENT)
EX,5,5,0,25,-135,0,10,45
XQ,
PT1, 11,8,0 ANTENNA 1 (Y AXIS ELEMENT)
EX1,5,5,.0,25,-135,0,10,45
XQ,
PT1,12,2,0 ANTENNA 2 (X AXIS ELEMENT)
EX1,5,5,0,25,-135,O,10,45
XQ,
PT1, 12,8,0 ANTENNA 2 (Y AXIS ELEMENT)
EXi,5,5 r0, 25,-135, 0,10,45
XQ,
PT1,13,2,0 ANTENNA 3 (X AXIS ELEMENT)
EXi, 5,5,0,25, -135,0,10,45
XQ,
PT1, 13,8,0 ANTENNA 3 (Y AXIS ELEMENT)
EX1,5,5,0,25,-135,0,10,45
XQ,
PT1,14,2,0 ANTENNA 4 (X AXIS ELEMENT)
EXi, 5,5,0,25, -135,0,10,45
XQ,
PT1, 14,8,0 ANTENNA 4 (Y AXIS ELEMENT)
EXi, 5,5,0,25, -135,0,10,45
XQ,
PT1,15,2,0 ANTENNA 5 (X AXIS ELEMENT)
EXi, 5,5,0,25, -135,0,10,45
XQ,
PT1,15,8,C ANTENNA 5 (Y AXIS ELEMENT)
EXi, 5,5,0, 25, -135,0,10,45
XQ,
PT1, 16,2,0 ANTENNA 6 (X AXIS ELEMENT)
EX,5,5,0,25,-135,0,10,45
XQ,
PT1,16,8, 0 ANTENNA 6 (Y AXIS ELEMENT)
EX1,5,5,0,25,-135,0,10,45
XQ,
PT1,20, 2,0 ANTENNA 0 (X AXIS ELEMENT)
EX,5,5,0,25,-135,0,10,45
XQ,
PT1,20, 8,0 ANTENNA 0 (Y AXIS ELEMENT)
EXi, 5,5,0, 25,-135, 0,10,45
XQ,
EN END NEC DATASET
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APPENDIX B

ANTENNA INPUT IMPEDANCE

TABLE B-1

5FT SO CROSSED LOOP TOP FEED

FREQ. IMPEDANCE LOOP-I IMPEDANCE LOOP-2
MHZ (Y AXIS) (X AXIS)

REAL IMAGINARY REAL IMAGINARY

GOOD GROUND (EPS-30, SIG-0.01)
2 0.026 46 0.02 45
3 0.20 70 0.11 67
4 0.55 93 0.35 91
5 0.97 118 0.66 115
6 1.6 144 1.08 141
7 2.2 171 1.59 167
8 3.1 201 2.27 195
9 4.4 232 3.20 226

10 6.0 266 4.44 258

POOR GROUND (EPS-5, SIG-0.001)
2 0.59 46 0.30 45
3 0.93 69 0.51 67
4 1.22 92 0.70 90
5 1.51 116 0.90 114
6 1.82 141 1.12 139
7 2.14 168 1.37 165
8 2.49 195 1.73 193
9 3.22 226 2.16 222

10 3.94 259 2.71 255

PERFECT GROUND
2 0.001 43 0.001 42
3 0.003 64 0.003 64
4 0.011 86 0.011 86
5 0.026 109 0.026 109
6 0.055 133 0.055 133
7 0.10 158 0.10 158
8 0.18 184 0.18 184
9 0.30 212 0.30 212

10 0.47 242 0.47 242

FREE SPACE
2 0.000 43 0.000 43
3 0.002 65 0.002 65
4 0.005 87 0.005 87
5 0.013 110 0.013 110
6 0.028 135 0.028 135
7 0.055 160 0.055 159
8 0.10 186 0.10 186
9 0.17 215 0.17 215

10 0.29 246 0.29 246
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TABLE B-2

6 FT VERTICA.L MONOPO.LE. 6FT SQ WIRE MESH

FREQ. IMPEDANCE

MHz REAL IMAGINARY

GOOD GROUND (EPS-30, SIG-0.01)
10 12 -541
11 13 -479

412 14 -426
13 16 -380
14 19 -339
15 22 -302
16 26 -268
17 32 -237
18 40 -209
19 49 -184
20 59 -163

POOR GROUND (EPS-5, SIG-0.O01)
10 15 -574
11 14 -511
12 14 -458
13 14 -412
14 14 -371
15 lb -335
16 15 -303
17 16 -274
18 17 -247
19 18 -222
20 18 -199

PERFECT GROUND
*10 3.2 -553

11 3.2 -493
12 4.6 -443
13 5.4 -399
14 6.3 -361
15 7.2 -327
16 8.3 -297
17 9.4 -270
18 10.5 -245
19 11.8 -222
20 13.1 -201

FREE SPACE
10 1.6 -656
11 2.0 -586
12 2.4 -526
13 2.8 -475
14 3.2 -431
15 3.7 -391
16 4.3 -356
17 4.9 -324
18 5.5 -295
19 6.2 -268
20 6.9 -243

79



APPENDIX C

CROSSED LOOP MhDIATION PATT3 M

HFDF SSL 5FT CROSSED LOOP OVER PERFECT GROUND
ELEVATION PATTERN (2MHZ)
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Figure C-1
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* HFDF SSL 5FT CROSSED LOOP OVER GOOD GROUND
ELEVATION PATTERN (2MHZ, EPS=30, SIGO.O1)
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Figure C-2
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HFDF SSL 5FT CROSSED LOOP OVER POOR GROUND
ELEVATION PATTERN (2MHZ, EPS-5, SIG-=O.OO1)
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Figure C-3
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HFDF SSL 5FT CROSSED LOOP OVER PERFECT GROUND
ELEVATION PATTERN (5MHZ)
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Figure C-4
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HFDF SSL 5FT CROSSED LOOP OVER GOOD GROUND
ELEVATION PATTERN (5MHZ, EPS=30, SIG=0.01)

90

120 so

150 30

180 0
-20 -15 -10 -5

PATTERtN GAIN IN DI1
- aU S -S 0 S HORIZONTAL

m m VERTICAL

TOTAL

rLrVATION ANGLE

Figure C-5
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* HFDF SSL 5FT CROSSED LOOP OVER POOR GROUND
ELEVATION PATTERN (5MHZ, EPS=5, SIG=O.OO1)
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Figure C-6
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HFDF SSL 5FT CROSSED LOOP OVER PERFECT GROUND
ELEVATION PATTERN (10MHZ)

90

200 00

-10 -5 0 5

PATTERfN GAIN IN 091
HHRIZONTAL

VERTICAL

TOTAL

ELEVATION ANGLE

Figure C-7
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HFDF SSL 5FT CROSSED LOOP OVER GOOD GROUND
ELEVATION PATTERN (10MHZ, EPS=30, SIGO.O1)
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Figure C-8
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HFDP SSL 5FT CROSSED LOOP OVER POOR GROUND
ELEVATION PATTERN (10MHZ, EPS--, SIG=-0.OO1)
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Figure C-9
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HFDF SSL 5FT CROSSED LOOP OVER PERFECT GROUND
HORIZONTAL PATTERN (5M4HZ)
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Figure C-10
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AIPENDIX D

VIRTICAL MONOPOLI PADIATION PATTZRNS

HFDF SSL 6FT MONOPOLE, 6FT SQ WIRE MESH. OVER PERFECT GROUND
ELEVATION PATTERN (10MHZ)
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Figure D-1

90



HFDF SSL 6FT MONOPOLE, 6FT SQ WIRE MESH, OVER GOOD GROUND
ELEVATION PATTERN (10MHZ, EPS=30, SIGO-.O1)
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Figure D-2
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HFDF SSL 6FT MONOPOLE, 6FT SQ WIRE MESH. OVER POOR GROUND
ELEVATION PATTERN (10MHZ, EPS=5, SIG,-:.001)
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Figure D-3
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HFDF SSL 6FT MONOPOLE, 6FT SO WIRE MESH, OVER PERFECiT GROUND
ELEVATION PATTERN (15MHZ)
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Figure D-4
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HFDF!3SL 5FT MONOPOLEF, 6FT SQ WIRE MESH, OVER GOOD GROUND
ELEVATION PATTERN (15MHZ. EPS=30, SI G0.1)
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Figure D-5
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HFDF SSL 6FT MONOPOLE. 6FT SO-WIRE MESH, OVER POOR GROUND
ELEVATION PATTERN (15MHZ. EPS=5, 0-10=.001)
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Figure D-6
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HFOP SSL 8FT MONOPOLE, 6FT SQ WIRE MESH. OVER PERFECT GROUND
ELEVATION PATTERN (20MHZ)
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Figure D-7
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HFDF SSL 6FT MONOPOLE. BFT SQ- WIRE MESH. OVER GOOD GROUND
ELEVATION PATTERN (20MHZ. EPS=30, SIG00.01)
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Figure D-8
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HFDF SSL 6FT MONOPOLE, 6FT SQ WIRE MESH, OVER POOR GROUND
ELEVATION PATTERN (20MHZ, EPS-5, SIG=0.OO1)
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Figure D-9
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HFDF SSL 6FT MONOPOLE, 6FT SO WIRE MESH. -OVER PERFECT M'~OUND
HORIZONTAL PATTERN (15MHZ)
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